Produtos notáveis

Utilizados para simplificar as contas do produto algébrico, os produtos notáveis apresentam cinco casos distintos.

Antes de entendermos o que são produtos notáveis, devemos saber o que são expressões algébricas, isto é, equações que possuem letras e números. Veja alguns exemplos:

$$2x + 3 = 4$$

 $-y + 2x + 1 = 0$
 $z^{2} + ax + 2y = 3$

Os produtos notáveis possuem fórmulas gerais, que, por sua vez, são a simplificação de produtos algébricos. Veja:

$$(x + 2) \cdot (x + 2) =$$

 $(y - 3) \cdot (y - 3) =$
 $(z + 4) \cdot (z - 4) =$

Há cinco casos distintos de produtos notáveis, a saber:

Primeiro Caso:

QUADRADO DA SOMA DE DOIS TERMOS

O quadrado da soma de dois termos é igual ao quadrado do primeiro, mais duas vezes o produto do primeiro pelo segundo, mais o quadrado do segundo.

- quadrado = expoente 2;
- Soma de dois termos = a + b;
- Logo, o quadrado da soma de dois termos é: $(a + b)^2$

Efetuando o produto do quadrado da soma, obtemos:

$$(\mathbf{a} + \mathbf{b})^2 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) =$$

= $\mathbf{a}^2 + \mathbf{a} \cdot \mathbf{b} + \mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2 =$
= $\mathbf{a}^2 + 2 \cdot \mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2$

Toda essa expressão, ao ser reduzida, forma o produto notável, que é dado por:

$$(a + b)^2 = a^2 + 2 \cdot a \cdot b + b^2$$

Sendo assim, o quadrado da soma de dois termos é igual ao quadrado do primeiro termo, mais duas vezes o primeiro termo pelo segundo, mais o quadrado do segundo termo.

Exemplos:

$$(2 + a)^2 =$$

= $2^2 + 2 \cdot 2 \cdot a + a^2 =$
= $4 + 4 \cdot a + a^2$

$$(3x + y)^{2} =$$
= $(3 x)^{2} + 2 \cdot 3x \cdot y + y^{2} =$
= $9x^{2} + 6 \cdot x \cdot y + y^{2}$

Efetue

a)
$$(x + 3y)^2 =$$

b)
$$(7x + 1)^2 =$$

c)
$$(a^5+2bc)^2 =$$

Segundo Caso:

QUADRADO DA DIFERENÇA DE DOIS TERMOS

O quadrado da diferença de dois termos é igual ao quadrado do primeiro, menos duas vezes o produto do primeiro pelo segundo mais o quadrado do segundo.

Quadrado da diferença de dois termos.

- Quadrado = expoente 2;
- Diferença de dois termos = a b;
- Logo, o quadrado da diferença de dois termos é: (a b)².

Vamos efetuar os produtos por meio da propriedade distributiva:

$$(\mathbf{a} - \mathbf{b})^2 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b})$$

= $\mathbf{a}^2 - \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2 =$
= $\mathbf{a}^2 - 2 \cdot \mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2$

Reduzindo essa expressão, obtemos o produto notável:

$$(a - b)^2 = a^2 - 2 \cdot a \cdot b + b^2$$

Temos, então, que o quadrado da diferença de dois termos é igual ao quadrado do primeiro termo, menos duas vezes o primeiro termo pelo segundo, mais o quadrado do segundo termo.

Exemplos:

$$(a-5c)^2 =$$

= $a^2 - 2 \cdot a \cdot 5c + (5c)^2 =$
= $a^{2-}10 \cdot a \cdot c + 25c^2$

$$(p-2s) =$$
 $= p^2 - 2 \cdot p \cdot 2s + (2s)^2 =$
 $= p^2 - 4 \cdot p \cdot s + 4s^2$

Efetue

1)
$$(7x-4)^2$$

2)
$$(6a-b)^2=$$

3)
$$(x3 - xy)^2 =$$

Terceiro Caso:

PRODUTO DA SOMA PELA DIFERENÇA DE DOIS TERMOS

$$(x + y)$$
 . $(x - y)$ = x^2 - y^2
Soma dos termos do 1º termo do 2º termo

O produto da soma pela diferença de dois termos é igual ao quadrado do primeiro termo menos o quadrado do segundo termo.

Produto da soma pela diferença de dois termos.

- Produto = operação de multiplicação;
- Soma de dois termos = a + b;
- Diferença de dois termos = a b;
- O produto da soma pela diferença de dois termos é: $(a + b) \cdot (a b)$

Resolvendo o produto de (a + b). (a - b), obtemos:

$$(\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) =$$

= $\mathbf{a}^2 - \mathbf{a}\mathbf{b} + \mathbf{a}\mathbf{b} - \mathbf{b}^2 =$
= $\mathbf{a}^2 + 0 + \mathbf{b}^2 = \mathbf{a}^2 - \mathbf{b}^2$

Reduzindo a expressão, obtemos o produto notável:

$$(a + b) \cdot (a - b) = a^2 - b^2$$

Podemos concluir, portanto, que o produto da soma pela diferença de dois termos é igual ao quadrado do primeiro termo menos o quadrado do segundo termo.

Exemplos:

$$(2-c) \cdot (2+c) =$$

= $2^2 - c^2 =$
= $4 - c^2$

$$(3x^2 - 1) \cdot (3x^2 + 1) =$$

= $(3x^2)^2 - 1^2 =$
= $9x^4 - 1$

Efetue

1)
$$(3a + x) \cdot (3a - x) =)$$

2)
$$(x^2 + 5p) \cdot (x^2 - 5p) =$$

3)
$$(10 - ab^4)$$
. $(10 + ab^4)$ =

Quarto caso:

CUBO DA SOMA DE DOIS TERMOS

O cubo da soma de dois termos é igual ao cubo do primeiro, mais três vezes o produto do quadrado do primeiro pelo segundo, mais três vezes o produto do primeiro pelo quadrado do segundo, mais o cubo do segundo.

Cubo da soma de dois termos

- Cubo = expoente 3;
- Soma de dois termos = a + b;
- Logo, o cubo da soma de dois termos é: $(a + b)^3$

Efetuando o produto por meio da propriedade distributiva, obtemos:

$$(\mathbf{a} + \mathbf{b})^3 = (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) \cdot (\mathbf{a} + \mathbf{b}) =$$

$$= (a^2 + a \cdot b + a \cdot b + b^2) \cdot (a + b) =$$

$$= (a^2 + 2 \cdot a \cdot b + b^2) \cdot (a + b) =$$

$$= a^3 + 2 \cdot a^2 \cdot b + a \cdot b^2 + a^2 \cdot b + 2 \cdot a \cdot b^2 + b^3 =$$

$$= a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$$

Reduzindo a expressão, obtemos o produto notável:

$$(a + b)^3 = a^3 + 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 + b^3$$

O cubo da soma de dois termos é dado pelo cubo do primeiro, mais três vezes o primeiro termo ao quadrado pelo segundo termo, mais três vezes o primeiro termo pelo segundo ao quadrado, mais o cubo do segundo termo.

Exemplos

$$(3c + 2a)^3 =$$
= $(3c)^3 + 3 \cdot (3c)^2 \cdot 2a + 3 \cdot 3c \cdot (2a)^2 + (2a)^3 =$
= $27c^3 + 54 \cdot c^2 \cdot a + 36 \cdot c \cdot a^2 + 8a^3$

: Efetue:

a)
$$(a + b)^3 =$$

b)
$$(x + 4)^3 =$$

c)
$$(2a + y)^3 =$$

Quinto caso:

CUBO DA DIFERENÇA DE DOIS TERMOS

O cubo da diferença de dois termos é igual ao cubo do primeiro, menos três vezes o produto do quadrado do primeiro pelo segundo, mais três vezes o produto do primeiro pelo quadrado do segundo, menos o cubo do segundo.

Cubo da diferença de dois termos

- Cubo = expoente 3;
- Diferença de dois termos = a b;
- Logo, o cubo da diferença de dois termos é: (a b)³.

Efetuando os produtos, obtemos:

$$(\mathbf{a} - \mathbf{b})^3 = (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) \cdot (\mathbf{a} - \mathbf{b}) =$$

$$= (a^2 - \mathbf{a} \cdot \mathbf{b} - \mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2) \cdot (\mathbf{a} - \mathbf{b}) =$$

$$= (a^2 - 2 \cdot \mathbf{a} \cdot \mathbf{b} + \mathbf{b}^2) \cdot (\mathbf{a} - \mathbf{b}) =$$

$$= a^3 - 2 \cdot a^2 \cdot \mathbf{b} - a \cdot b^2 - a^2 \cdot \mathbf{b} + 2 \cdot a \cdot b^2 - b^3 =$$

$$= a^3 - 3 \cdot a^2 \cdot \mathbf{b} + 3 \cdot a \cdot b^2 - b^3$$

Reduzindo a expressão, obtemos o produto notável:

$$(a - b)^3 = a^3 - 3 \cdot a^2 \cdot b + 3 \cdot a \cdot b^2 - b^3$$

O cubo da diferença de dois termos é dado pelo cubo do primeiro, menos três vezes o primeiro termo ao quadrado pelo segundo termo, mais três vezes o primeiro termo pelo segundo ao quadrado, menos o cubo do segundo termo.

Exemplo:

$$(x - 2y)^3 =$$
= $x^3 - 3 \cdot x^2 \cdot 2y + 3 \cdot x \cdot (2y)^2 - (2y)^3 =$
 $x^3 - 6 \cdot x^2 \cdot y + 12 \cdot x \cdot y^2 - 8y^3$

: Efetue:

a)
$$(a - b)^3 =$$

b)
$$(x-4)^3 =$$

c)
$$(2a - y)^3 =$$

)

Utilizando as regras dos produtos notáveis, calcule:

a)
$$(x + 3)^2$$

b)
$$(a + b)^2$$

c)
$$(5y - 1)^2$$

d)
$$(x^2 - 6)^2$$

e)
$$(2x + 7)^2$$

f)
$$(9x + 1) \cdot (9x - 1)$$

g) $(a2 - xy)^2$

g)
$$(a2 - xy)^2$$

k)
$$(x^3y - xy^3)^2$$

i) $(3y - 5)^2$

i)
$$(3y - 5)^2$$

$$(2x^2 + 3xy)^2$$

k)
$$(10x^2 - ab)^2$$

$$(2a^3 + 3a)^2$$

m)
$$(ab + a^2)$$
 . $(ab - a^2)$